Trees and Traversals

Weiss, from the beginning of chapter 19 through 19.3 (pages 687–706)
Trees

- Trees establish hierarchical (child-parent) relationship between values.
- For example, a reporting structure within a company has a hierarchy:

```
CEO
  - Vice President (Finance)
    - Manager
      - Programmer
  - Vice President (Engineering)
    - Manager
      - Programmer
      - Designer
```


Trees

• A tree has recursive definition. A tree is either:
 ▪ Empty (a node with no value) or
 ▪ A node with a value, a left sub-tree, and a right sub-tree

• This tree is called a *binary* tree. Each node has at most two children. Sub-trees are recursive occurrence of the tree definition.

• The top most element of tree is called *root*.

• Any two nodes, which are connected by an *edge*, have the parent-child relationship.

 For example, 9 is the parent of 7. 7 is a child of 9.

• The bottom most elements are *leaves*. They do not have children.
Trees

• A unique path traverses from the root to each node. The number of edges on this path is called *path length*.
• For a path from node u to node v, u is the *ancestor* of v and v is the *descendent* of u.
• Depth of a node is the length of a path from root to the node. For example, the depth of node 6 is 3.
• Height of a node is the length of a path from node to the deepest leaf. For example, the height of node 9 is 2.
• Height of the root node is known as the height of tree (3).
class BinaryNode<AnyType> {
 private AnyType element;
 private BinaryNode<AnyType> left;
 private BinaryNode<AnyType> right;
 public BinaryNode() { this(null, null, null); }
 public BinaryNode(AnyType element Node<AnyType> left, Node<AnyType> right) {
 this.element = element;
 this.left = left;
 this.right = right;
 }
}

public class BinaryTree<AnyType> {
 private BinaryNode<AnyType> root;
 public BinaryTree() { root = null; } // empty tree
 public BinaryTree(AnyType rootElement) { // one-node tree
 root = new BinaryNode<AnyType>(rootElement, null, null);
 }
}
Recursion in Tree

• Size of a node is one plus the number of descendents of the node.
 ▪ Recursive definition: one plus the sizes of the left and right subtrees
• Size of a tree is the size of tree root.

• The base case occurs when tree is empty. Size is zero.

```java
public static <AnyType> int sizeHelper( BinaryNode<AnyType> t ) {
    if ( t == null ) {
        return 0;
    }
    return 1 + sizeHelper( t.left ) + sizeHelper( t.right );
}
```

• sizeHelper is a helper method. It is called within another method another method (e.g., size).

```java
public int size() {return BinaryNode.sizeHelper(root); } 
```
Binary Search Tree

- Sequential search takes $O(N)$ time. You can sort elements and then use the binary search algorithm that takes $O(\log N)$ time.
- Sorting is an overhead for searching.

- Binary search tree is a tree that defines a kind of sortedness of elements. A binary search tree is either
 - An empty tree
 - A node with a value and left and right sub-trees. All values in the left sub-tree are less than the node value and all values in the right sub-tree are greater than the node value.
Binary Search Tree

- **When inserting** a node into a binary search tree:
 - If the sub-tree is empty, replace it with the node. The new sub-tree does not have left and right sub-trees.

```java
private static TreeNode<AnyType> insertH(AnyType e, TreeNode<AnyType> t) {
    if(t == null) { return new TreeNode<AnyType>(AnyType, null, null); }
    else if(e.compareTo(t.element) < 0) {
        t.left = insertH(e, t.left);
    } else if (e.compareTo(t.element) > 0){
        t.right = insertH(e, t.right);
    } else { throw new DuplicateItemException( e.toString( ));}
    return t; // returns the updated root of a sub-tree
}

public void insert(AnyType e) { root = insertH(e, root); }
```
Binary Search Tree

- When removing a node from a binary search tree:
 - If the node is a leaf, just remove the node and replace its parent’s child link to null.
 - If the node has one child, adjust its parent’s child link to bypass the deleted node.
Binary Search Tree

• When *removing* a node v from a binary search tree:
 - If the node has *two children*, 1) replace the value in the node v with the smallest value in the right sub-tree of node v and 2) remove the node with the smallest value.

```
   6
  /   \
2     9
 / \
1   8

   6
  /   \
2     13
 /     /\n1     15
    / \
   14

   6
  /   \
2     13
 /     /\n1     15
    / \
   14
   / \
  14
```
Tree Traversal

• Consider a toString method that displays the values of tree nodes.

• The order of traversing (visiting) nodes is important. Here is an ordering for traversing the nodes:
 • If tree is empty, display an empty string
 • If tree is not empty, display the value of this node. Then, recursively, display values of the left sub-trees and right sub-tree, in-order.

Output: [5, 2, 1, 3, 8, 7, 6, 9, 10]

• This traversal is called the pre-order traversal.

```
      5
     / \
    2   8
   / \  / \
  1   3 7   9
    /   /    \
   6    10
```
Tree Traversal

- There are two more traversals:
 - **In-order** traversal: recursively, display values of the left sub-tree. Then, display the value of this node. After that, display the values of the right sub-tree.
 Output: \([1, 2, 3, 5, 6, 7, 8, 9, 10]\)
 - The elements are displayed in the *sorted* order.
 - **Post-order** traversal: recursively, display values of the left sub-tree and right sub-tree. Then, display the value of this node.
 Output: \([1, 3, 2, 6, 7, 10, 9, 8, 5]\)
Time Complexity

• For each of the tree traversals, every node is visited. The traversals take O(N) time.
• The running time of *search* and *insert* operations depends on path length. A binary search tree looks like
 ▪ A linked list. At the worst case, the running time is O(N).
 ▪ A *perfect* tree. The running time is the length of a path from root to leaf. It is computed based on the number of nodes N.
 ▪ N is computed based on the number of nodes at each *level* of tree.
Time Complexity

• The number of nodes at level \(i \) of a perfect binary search tree is \(2^i \).

Proof by induction:
• \(i = 0 \) (first level): \(2^0 = 1 \)
• \(i = k + 1 \): At level \(k \), there are \(2^k \) nodes. Each node has two children. Thus, the number of nodes at level \(k + 1 \) is \(2^k \cdot 2 = 2^{k+1} \).

For a tree with height \(h \), the total number of nodes is:

\[
N = \sum_{i=0}^{h} 2^i = 2^0 + 2^1 + \cdots + 2^h
\]

\[
N = 2^{h+1} - 1
\]

\[
N = 2^{h+1} - 1 \rightarrow N + 1 = 2^{h+1} \rightarrow \log_2 N + 1 = \log_2 2^{h+1} \rightarrow \log_2 N + 1 = h + 1 \rightarrow \log_2 N + 1 - 1 = h
\]

The height \((h) \) is \(O(\log N) \).